Elementary Data Structures

Stacks, Queues, & Lists

Amortized analysis

Trees

The Stack ADT (§4.2.1)

The Stack ADT stores arbitrary objects

Insertions and deletions follow the last-in first-out scheme

Think of a spring-loaded plate dispenser

Main stack operations:

- push(Object o): inserts element o
- pop(): removes and returns the last inserted element

Auxiliary stack operations:

- top(): returns the last inserted element without removing it
- size(): returns the number of elements stored
- isEmpty(): a Boolean value indicating whether no elements are stored

Applications of Stacks

Direct applications

- Page-visited history in a Web browser
- Undo sequence in a text editor
- Chain of method calls in the Java Virtual Machine or C++ runtime environment

Indirect applications

- Auxiliary data structure for algorithms
- Component of other data structures

Array-based Stack (§4.2.2)

A simple way of implementing the Stack ADT uses an array

We add elements from left to right

A variable t keeps track of the index of the top element (size is t+1)

Algorithm pop():

if isEmpty() then
 throw EmptyStackException
else
 t ← t - 1
 return S[t+1]

Algorithm push(o):

if t = S.length - 1 then
 A ← new array of size ...
 for i ← 0 to t do
 A[i] ← S[i]
 S ← A
 t ← t + 1
 S[t] ← o

Comparison of the Strategies

We compare the incremental strategy and the doubling strategy by analyzing the total time $T(n)$ needed to perform a series of n push operations

We assume that we start with an empty stack represented by an array of size 1

We call amortized time of a push operation the average time taken by a push over the series of operations, i.e., $T(n)/n$
Analysis of the Incremental Strategy

- We replace the array \(k = n/c \) times.
- The total time \(T(n) \) of a series of \(n \) push operations is proportional to
 \[
 n + c + 2c + 3c + 4c + \ldots + kc = \\
 n + c(1 + 2 + 3 + \ldots + k) = \\
 n + ck(k + 1)/2
 \]
- Since \(c \) is a constant, \(T(n) \) is \(O(n + k^2) \), i.e., \(O(n^2) \).
- The amortized time of a push operation is \(O(n) \).

Direct Analysis of the Doubling Strategy

- We replace the array \(k = \log_2 n \) times.
- The total time \(T(n) \) of a series of \(n \) push operations is proportional to
 \[
 n + 1 + 2 + 4 + 8 + \ldots + 2^k = \\
 n + 2^{k+1} - 1 = 2n - 1
 \]
- \(T(n) \) is \(O(n) \).
- The amortized time of a push operation is \(O(1) \).

Accounting Method Analysis of the Doubling Strategy

- The accounting method determines the amortized running time with a system of credits and debits.
- We view a computer as a coin-operated device requiring 1 cyber-dollar for a constant amount of computing.

 - We set us a scheme for charging operations. This is known as an amortization scheme.
 - The scheme must give us always enough money to pay for the actual cost of the operation.
 - The total cost of the series of operations is no more than the total amount charged.
 - (amortized time) \(\leq \) (total $ charged) / (# operations)

Amortization Scheme for the Doubling Strategy

- Consider again the \(k \) phases, where each phase consisting of twice as many pushes as the one before.
- At the end of a phase we must have saved enough to pay for the array-growing push of the next phase.
- At the end of phase \(i \) we want to have saved \(i \) cyber-dollars, to pay for the array growth for the beginning of the next phase.

- We charge $3 for a push. The $2 saved for a regular push are "stored" in the second half of the array. Thus, we will have \(2(\log_2 n) \) cyber-dollars saved at then end of phase \(i \).
- Therefore, each push runs in \(O(1) \) amortized time; \(n \) pushes run in \(O(n) \) time.

The Queue ADT (§4.3.1)

- The Queue ADT stores arbitrary objects.
- Insertions and deletions follow the first-in first-out scheme.
- Insertions are at the rear of the queue and removals are at the front of the queue.
- Main queue operations:
 - enqueue(object o): inserts element \(o \) at the end of the queue.
 - dequeue(): removes and returns the element at the front of the queue.
- Auxiliary queue operations:
 - front(): returns the element at the front without removing it.
 - size(): returns the number of elements stored.
 - isEmpty(): returns a Boolean value indicating whether no elements are stored.
- Exceptions:
 - Attempting the execution of dequeue or front on an empty queue throws an EmptyQueueException.

Applications of Queues

- Direct applications:
 - Waiting lines
 - Access to shared resources (e.g., printer)
 - Multiprogramming
- Indirect applications:
 - Auxiliary data structure for algorithms
 - Component of other data structures
Singly Linked List

- A singly linked list is a concrete data structure consisting of a sequence of nodes.
- Each node stores:
 - element
 - link to the next node

Queue with a Singly Linked List

- We can implement a queue with a singly linked list:
 - The front element is stored at the first node.
 - The rear element is stored at the last node.
- The space used is $O(n)$ and each operation of the Queue ADT takes $O(1)$ time.

List ADT (§5.2.2)

- The List ADT models a sequence of positions storing arbitrary objects.
- It allows for insertion and removal in the "middle".
- Query methods:
 - isFirst(p), isLast(p)
- Accessor methods:
 - first(), last()
 - before(p), after(p)
- Update methods:
 - replaceElement(p, o), swapElements(p, q)
 - insertBefore(p, o), insertAfter(p, o),
 - insertFirst(o), insertLast(o)
 - remove(p)

Doubly Linked List

- A doubly linked list provides a natural implementation of the List ADT.
- Nodes implement Position and store:
 - element
 - link to the previous node
 - link to the next node
- Special trailer and header nodes.

Trees (§6.1)

- In computer science, a tree is an abstract model of a hierarchical structure.
- A tree consists of nodes with a parent-child relation.
- Applications:
 - Organization charts
 - File systems
 - Programming environments

Tree ADT (§6.1.2)

- We use positions to abstract nodes.
- Generic methods:
 - integer size()
 - boolean isEmpty()
 - objectIterator elements()
 - positionIterator positions()
- Accessor methods:
 - position root()
 - position parent(p)
 - positionIterator children(p)
- Query methods:
 - boolean isInternal(p)
 - boolean isExternal(p)
 - boolean isRoot(p)
- Update methods:
 - swapElements(p, q)
 - object replaceElement(p, o)
- Additional update methods may be defined by data structures implementing the Tree ADT.
Preorder Traversal (§6.2.3)

A traversal visits the nodes of a tree in a systematic manner.
In a preorder traversal, a node is visited before its descendants.
Application: print a structured document.

Algorithm `preOrder(v)
visit(v)
for each child w of v
preorder(w)`

Postorder Traversal (§6.2.4)

In a postorder traversal, a node is visited after its descendants.
Application: compute space used by files in a directory and its subdirectories.

Algorithm `postOrder(v)
for each child w of v
postOrder(w)
visit(v)`

Amortized Analysis of Tree Traversal

Time taken in preorder or postorder traversal of an n-node tree is proportional to the sum, taken over each node v in the tree, of the time needed for the recursive call for v.
- The call for v costs $(c_v + 1)$, where c_v is the number of children of v.
- For the call for v, charge one cyber-dollar to v and charge one cyber-dollar to each child of v.
- Each node (except the root) gets charged twice: once for its own call and once for its parent's call.
- Therefore, traversal time is $O(n)$.

Binary Trees (§6.3)

A binary tree is a tree with the following properties:
- Each internal node has two children.
- The children of a node are an ordered pair.
- We call the children of an internal node left child and right child.
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree.

Applications:
- arithmetic expressions
- decision processes
- searching

Arithmetic Expression Tree

Binary tree associated with an arithmetic expression:
- internal nodes: operators
- external nodes: operands
Example: arithmetic expression tree for the expression $(2 \times (a - 1) + (3 \times b))$

Decision Tree

Binary tree associated with a decision process:
- internal nodes: questions with yes/no answer
- external nodes: decisions
Example: dining decision

Want a fast meal?

\[\text{How about coffee?} \quad \text{On expense account?} \]

\[\begin{array}{c}
\text{Starbucks} \\
\text{In 'N Out} \\
\text{Antoine's} \\
\text{Denny's}
\end{array} \]
Properties of Binary Trees

Notation
- n: number of nodes
- e: number of external nodes
- i: number of internal nodes
- h: height

Properties:
- $e = i + 1$
- $n = 2e - 1$
- $h \leq i$
- $e \leq 2^h$
- $h \geq \log_2 e$
- $h \geq \log_2 (n + 1) - 1$

Inorder Traversal

In an inorder traversal a node is visited after its left subtree and before its right subtree.

Application: draw a binary tree
- $x(v)$: inorder rank of v
- $y(v)$: depth of v

Algorithm
```
inOrder(v)
  if isInternal(v)
    inOrder(leftChild(v))
  visit(v)
  if isInternal(v)
    inOrder(rightChild(v))
```

Euler Tour Traversal

Generic traversal of a binary tree
- Includes a special cases the preorder, postorder and inorder traversals
- Walk around the tree and visit each node three times:
 - on the left (preorder)
 - from below (inorder)
 - on the right (postorder)

Printing Arithmetic Expressions

Specialization of an inorder traversal
- print operand or operator when visiting node
- print "(" before traversing left subtree
- print ")" after traversing right subtree

Algorithm
```
printExpression(v)
  if isInternal(v)
    print("(")
    inOrder(leftChild(v))
    print(v.element)
    inOrder(rightChild(v))
    print(")")
```

Linked Data Structure for Representing Trees (§6.4.3)

- A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes
- Node objects implement the Position ADT

Linked Data Structure for Binary Trees (§6.4.2)

- A node is represented by an object storing
 - Element
 - Parent node
 - Left child node
 - Right child node
- Node objects implement the Position ADT
Array-Based Representation of Binary Trees (§6.4.1)

- nodes are stored in an array

- let rank(node) be defined as follows:
 - rank(root) = 1
 - if node is the left child of parent(node), rank(node) = 2 \times rank(parent(node))
 - if node is the right child of parent(node), rank(node) = 2 \times rank(parent(node)) + 1