Outline and Reading (812.4)

Reachability (§12.4.1)

= Directed DFS %/
= Strong connectivity

Transitive closure (§12.4.2)
= The Floyd-Warshall Algorithm

d, % Directed Acyclic Graphs (DAG's) (§12.4.3)
‘ = Topological Sorting

Directed Graphs 1 Directed Graphs 2

‘Digraphs ~Digraph Properties

% A digraph is a graph
whose edges are all
directed
= Short for “directed graph”

% Applications

= One-way streets
« flights
= task scheduling

A graph G=(V,E) such that
= Each edge goes in one direction:
+ Edge (a,b) goes from a to b, but not b to a.

If G is simple, m < n*(n-1).

If we keep in-edges and out-edges in separate
adjacency lists, we can perform listing of in-
edges and out-edges in time proportional to
their size.

Directed Graphs 3 Directed Graphs 4

‘Digraph Application Directed DFS

® Scheduling: edge (a,b) means task a must be
completed before b can be started

We can specialize the
traversal algorithms (DFS and

BFS) to digraphs by
traversing edges only along

@ their direction
In the directed DFS

algorithm, we have four
@ types of edges

= discovery edges

@ = back edges

= forward edges

@ = cross edges

A directed DFS starting a a
Th 4 lif vertex s determines the
seEllie vertices reachable from s

Directed Graphs 5 Directed Graphs 6

_Reachability

#®DFS tree rooted at v: vertices reachable
from v via directed paths
®

Directed Graphs

~Strong Connectivity \f _,)%

#Each vertex can reach all other vertices

\.@/'

Strong Connectivity
'Algorithm

% Pick a vertex v in G.
Perform a DFS from v in G.
= If there's a w not visited, print “no”.
Let G’ be G with edges reversed.
4 Perform a DFS from v in G'.
= If there's a w not visited, print “no”.
= Else, print “yes”.

4 Running time: O(n+m).

Directed Graphs

Strongly Connected ?%Q
_Components g

4 Maximal subgraphs such that each vertex can reach
all other vertices in the subgraph
Can also be done in O(n+m) time using DFS, but is
more complicated (similar to biconnectivity).

\@/' {a,c,g}

(D
o {f,d,e,b}

Directed Graphs 10

‘Transitive Closure

4 Given a digraph G, the @
transitive closure of G is the
digraph G* such that

= G* has the same vertices (©

as G

= if G has a directed path
from u to v (u #v), G*
has a directed edge from

utov ‘ e

The transitive closure 9
provides reachability 0
information about a digraph e

Directed Graphs

Computing the
Transitive Closure
| We can perform
DFS starting at

each vertex
= O(n(n+m))

If there's a way to get
from A to B and from
B to C, then there's a

way to get from A to C.

#Alternatively ... Use
dynamic programming:
The Floyd-Warshall
Algorithm

Directed Graphs

Floyd-Warshall
Transitive Closure

@ Idea #1: Number the vertices 1, 2, ..., n.

#Idea #2: Consider paths that use only
vertices numbered 1, 2, ..., k, as
intermediate vertices:

Uses only vertices numbered 1,...,k

(add this edge if it's not already in)

Uses only vertices

numbered 1,...,k-1 Uses only vertices

numbered 1,...,k-1

Directed Graphs 13

Floyd-Warshall’s Algorithm

Floyd-Warshall’s algorithm
numbers the vertices of G as
Vi, ..., v, @nd computes a
series of digraphs G, ..., G,

= GG

= G, has a directed edge (v, v)
if G has a directed path from
v; to v; with intermediate
vertices in the set {v,, ..., v}

We have that G,= G*

4 In phase k, digraph G, is
computed from G, _,

Running time: O(n3),
assuming areAdjacent is O(1)
(e.g., adjacency matrix)

Algorithm FloydWarshall(G)
Input digraph G
Output transitive closure G* of G
i1
for all v € G.vertices()
denote v as v;
i—i+l
G,«G
for i «— 1 to n do
G, <G,
fori« 1 ton (i =k)do
forj < 1ton(j =i k) do
if G, _,.areAdjacent(v, v;) A
G, _ .areAdjacent(v,, v,)
if ~Gj.areddjacent(v, v))

G.insertDirectedEdge(v, v;, k)

return G,

Directed Graphs

Directed Graphs 15

Directed Graphs 16

Floyd-Warshall, Iteration 2

‘Floyd-Warshall, Iteration 3

Directed Graphs 17

Directed Graphs 18

Directed Graphs 19

Directed Graphs 20

Directed Graphs 21

Directed Graphs 22

'DAGs and Topological Ordering

4 A directed acyclic graph (DAG) is a 0 G
digraph that has no directed cycles

4 A topological ordering of a digraph
is a numbering
of the vertices such that for every 0 DAG G

edge (v;, v), we have i <j
Example: in a task scheduling V. Vs

4
digraph, a topological ordering a 0 G
task sequence that satisfies the v,
precedence constraints e

Theorem vy

Y ® Topological

1 (©
ordering of G

Directed Graphs 23

A digraph admits a topological
ordering if and only if it is a DAG

1 A typical student day
2 3
-
study computer sci.
4
Caap

7

Directed Graphs 24

Algorithm for Topological Sorting

Note: This algorithm is different than the
one in Goodrich-Tamassia

Method TopologicalSort(G)

He« G // Temporary copy of G

n <« G.numVertices()

while H is not empty do
Let v be a vertex with no outgoing edges
Label v<—n
nen-1
Remove v from H

Running time: O(n + m). How...?

Directed Graphs 25

Topological Sorting
“Algorithm using DFS

Simulate the algorithm by using Algorithm ropological DFS(G, v)
depth-first search Input graph G and a start vertex v of G
Algorithm fopologicalDFS(G) Output labeling of the vertices of G
Input dag G in the connected component of v
/]
Output topological ordering of G setLabel(v, V IFITED)
n « G.numVertices() for all e € GuincidentEdges(v)
forall u e G.vertices() if getLabel(e) = UNEXPLORED
setLabel(u, UNEXPLORED) W « opposite(v,e)
for all e € G.edges() if getLabel(w) = UNEXPLORED
setLabel(e, UNEXPLORED) setLabel(e, DISCOVERY)
for all v € G.vertices() topologicalDFS(G, w)
if getLabel(v) = UNEXPLORED else
topologicalDFS(G, v) {e is a forward or cross edge}
Label v with topological number n
O(n+m) time. nen-1
Directed Graphs 26

. Topological Sorting Example

Directed Graphs 27

. Topological Sorting Example

Directed Graphs 28

. Topological Sorting Example

Directed Graphs 29

. Topological Sorting Example

Directed Graphs 30

. Topological Sorting Example

. Topological Sorting Example

32

34

. Topological Sorting Example

35

. Topological Sorting Example

36

