Pattern Matching

npnnnnn

nugmuﬂ

[eTo [« Telula]
:

Pattern Matching 1

Outline and Reading

#Strings (§11.1)
#Pattern matching algorithms
= Brute-force algorithm (§11.2.1)
= Boyer-Moore algorithm (§11.2.2)
= Knuth-Morris-Pratt algorithm (§11.2.3)

Pattern Matching 2

Strings

A string is a sequence of # Let P be a string of size m
characters = A substring P[i..j] of P is the
Examples of strings: subsequence of P consisting of
= C++ program the characters with ranks

between i and j
=-HTML document A prefix of P is a substring of

= DNA sequence the type P[0.. i]
= Digitized image A suffix of P is a substring of

An alphabet X'is the set of the type Pli..m - 1]
possible characters for a # Given strings 7 (text) and P
family of strings (pattern), the pattern matching
Example of alphabets: problem consists of finding a
« ASCII (used by C and C++) substring of T equal to P
= Unicode (used by Java) @ Applications:
« {0, 1} = Text editors
« {ACG T} = Search engines
= Biological research
Pattern Matching 3

Brute-Force Algorithm

T # The brute-force pattern

Algorithm BruteForceMatch(T, P)

matching algorithm compares Input lrepq T of size n and pattern
the pattern P with the text T Pofsizem A
for each possible shift of P Output starting index of a
relative to 7, until either substring of 7 equal to P or ~1
« amatch is found. or if no such substring exists
,

= all placements of the pattern for i« 0ton=m

have been tried { test shift 7 of the pattern }
Brute-force pattern matching Jj<0
runs in time O(nm) while j <m A T(i +j] = PJj]
4 Example of worst case: Jej+l
s T=aqaa...ah if j=m
= P=aaah return i {match ati}
= may occur in images and else
DNA sequences break while loop {mismatch}
= unlikely in English text return -1 {no match anywhere}
Pattern Matching 4

Boyer-Moore Heuristics

4 The Boyer-Moore’s pattern matching algorithm is based on two
heuristics
Looking-glass heuristic: Compare P with a subsequence of T
moving backwards
Character-jump heuristic: When a mismatch occurs at 77i] = ¢
= If P contains ¢, shift P to align the last occurrence of ¢ in P with 77i]
= Else, shift P to align P[0] with TTi + 1]

4 Example
[a] Tplale]eTelr n] [mlale[c [r]iTnlg] Talilele[rTile[n]m|
1 3 5 111098 7
[r[ilefnfm] — [r[ile[n]m] [r[ileln]m] [rTileln]m]
NLA X} A% oA
[r[ile]n]m] [r[ile[n]m] [r[ile]n]m]
Pattern Matching 5

Last-Occurrence Function

Boyer-Moore's algorithm preprocesses the pattern P and the
alphabet >'to build the last-occurrence function L mapping X' to
integers, where L(c) is defined as

= the largest index i such that P[i] = c or
= -1 if no such index exists

Example:
s Z={a,bcd} ¢ a b < 4
» P=abacab L(c) 4 5 3 -1

4 The last-occurrence function can be represented by an array
indexed by the numeric codes of the characters

The last-occurrence function can be computed in time O(m +s),
where m is the size of P and s is the size of

Pattern Matching 6

Algorithm BoyerMooreMatch(T, P, %)
L « lastOccurenceFunction(P, X)
i—m—1
jem—1
repeat

if 77i] = Plj]
if j=0
return i { matchati }

{ character-jump }
1 L[Ti]]
i< i+m—minQ, 1 +1)
Jjem—1
until i>n -1
return —1 { no match }

The Boyer-Moore Algorithm

Case 1: j<1+1

CLLLLT al
i

|
L[] [o]d]
A
Im —

i
LLT T]s]4d]
i
Case 2: 1 +1<j

LLLLL T Tel.T.T.I.T.
il T
| I
Iﬂlll !

!)
Im—(1+0)]

1+1

Pattern Matching 7

'Example

[a[s]a]c[afalb]ald]calblalclalb]a]a]s]s]

nmqnnﬂ
CDLERE [l
[eToTalelels] [e[s]el<[<l8]

£y 6o

[e]#]a]c]aTe]

Pattern Matching 8

‘Analysis

Boyer-Moore's algorithm
runs in time O(nm + s)
4 Example of worst case:
s T=aqaa...a
s P=baaa
The worst case may occur in
images and DNA sequences
but is unlikely in English text
Boyer-Moore’s algorithm is
significantly faster than the
brute-force algorithm on
English text

[a[a]afafalalala]a]

6 5 4 3 2 1

X1 1110 9 8 7

[6]afafala]d]

‘18 17 16 15 14 13

X4 23 22 21 20 19

Pattern Matching 9

The KMP Algorithm - Motivation

S

Knuth-Morris-Pratt’s algorithm
compares the pattern to the
text in left-to-right, but shifts \ . [[aI bI aI aI 1,] xl . [K [K { . [K \
the pattern more intelligently I
than the brute-force algorithm. |
When a mismatch occurs, —
what is the most we can shift unuun
the pattern so as to avoid I
redundant comparisons?
@ Answer: the largest prefix of [I
P[0.,/] that is a suffix of P[1.,j] r |
No need to| . \ Resume
repeat these

- comparing
comparisons here
Pattern Matching 10

- KMP Failure Function

Knuth-Morris-Pratt’s
algorithm preprocesses the
pattern to find matches of
prefixes of the pattern with
the pattern itself

Pjlla|b|a|a|b|a

Fplolol1 |1

The failure function F()is[. [. [a[b]alalb]x] . T.-T-1-]-]
defined as the size of the
largest prefix of P[0.,] that is |
also a suffix of P[1..j] —
Knuth-Morris-Pratt’s unun
algorithm modifies the brute- J
force algorithm so that if a
mismatch occurs at P[j] = TTi] EE
we set j« F(ji—1) F<(iA l“)l
l
Pattern Matching 11

‘The KMP Algorithm

Algorithm KMPMatch(T, P)
F « failureFunction(P)

' # The failure function can be
represented by an array and

can be computed in O(m) time]’:3
@ At each iteration of the while- while i< n
loop, either if 77, ;’] = P[j]
. if j=em-1
w i |ncre§ses by one., o'r return i—j { match }
= the shift amount i —j else
increases by at least one i—i+]
(observe that F(j — 1) <j) jej+1
Hence, there are no more e“elf 0
than 2n iterations of the JeFj-1]
while-loop else
Thus, KMP's algorithm runs in f<i+l

. .) -1 atch }
optimal time O(m + n) return -1 { no match }

Pattern Matching 12

Computing the Failure :@
Function =

The failure function can be

represented by an array and [y Cithm faiture Function(P)
can be computed in O(m) time FI0] < 0
4 The construction is similar to i1
the KMP algorithm itself j< 0
1 . . while i <m
4 At each iteration of the while- if P[i] = P[j]
loop, either {we have matched j + 1 chars}
= iincreases by one, or Fli] « j+1
. e P—i+l
= the shift amount i —j jej+l
increases by at least one else if j> 0 then
(observe that F(j - 1) <j) {use failure function to shift P}
4 Hence, there are no more adE -1
tha.n 2m iterations of the Flil < 0 { no match }
while-loop ieitl

'Example

[a[p]a]cala]b]a]c]c]a]b]a]c]a]b]a]alb]b]

8 9 1011 12

[a]p]a]c]a]b]

13
jlolilal3]als uuuuu

14 15 16 17 18 19

Pljl]la|b|a|c|a
Fhlojo|1]Oo]| 1|2 uuuﬂn

Pattern Matching 13

Pattern Matching 14

