Selection

)
N

[QLE

Selection 1

‘The Selection Problem

Given an integer k and n elements xy, X,, ..., X,
taken from a total order, find the k-th smallest

element in this set.

Of course, we can sort the set in O(n log n) time
and then index the k-th element.

k=3 (74962 5>246709]

Can we solve the selection problem faster?

Selection 2

‘Quick-Select (§10.7)

4 Quick-select is a randomized
selection algorithm based on
the prune-and-search
paradigm:

= Prune: pick a random element x

DDDHHD
(called pivot) and partition § into
+ L elements less than x |:| O |:|
-~

+ E elements equal x %r—J
+ G elements greater than x L E G
= Search: depending on k, either k< |[| T k> |LItE|
answer is in E, or we need to k’=k-|L|-|E|
recur on either L or G

IL| <k <|LI+|E]|
(done)

Selection 3

Partition

‘ # We partition an input
sequence as in the quick-sort
algorithm:

= We remove, in turn, each
element y from S and
= Weinsertyinto L, E or G,
depending on the result of
the comparison with the
pivot x
4 Each insertion and removal is
at the beginning or at the
end of a sequence, and
hence takes O(1) time
Thus, the partition step of
quick-select takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot
Output subsequences L, E, G of the
clements of S less than, equal to,
or greater than the pivot, resp.

L, E, G < empty sequences
X « S.remove(p)
while —S.isEmpty()
¥ < S.remove(S.first())
ify<x
L.insertLast(y)
else if y = x
E.insertLast(y)
else {y>x}
G.insertLast(y)
return L, E, G

Selection 4

Quick-Select Visualization

4 An execution of quick-select can be visualized by a
recursion path
= Each node represents a recursive call of quick-select, and
stores k and the remaining sequence

(k=5,5=(7 4 932 6 5 1 8)]

(k=2,5=(7 4 9 6 5 8)]
k=2,5=(7 4 65
k=1,5=(7 6 5

Selection 5

Expected Running Time @@

4 Consider a recursive call of quick-select on a sequence of size s

= Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4

72943761
g - =

72943761

Y

(2431) Gz

Good call Bad call
A call is good with probability 1/2
= 1/2 of the possible pivots cause good calls:

(12345678910111213141516 |
Bad pivots Good pivots Bad pivots

Selection 6

Expected Running Time, @
Part 2 &

Probabilistic Fact #1: The expected number of coin tosses required in
order to get one head is two

@ Probabilistic Fact #2: Expectation is a linear function:
w EX+Y)=EX)+EY)
n E(cX)=cEX)
Let T(n) denote the expected running time of quick-select.
By Fact #2,
u T(n) < T(3n/4) + bn*(expected # of calls before a good call)
By Fact #1,
w T(n) < T(3n/4) +2bn
That is, T(n) is a geometric series:
u T(n) <2bn + 2b(3/4)n + 2b(3/4)*n + 2b(3/4)*n + ...
4 So T(n) is O(n).
4 We can solve the selection problem in O(n) expected
time.

& @

®

®

Selection 7

Deterministic Selection

We can do selection in O(n) worst-case time.
Main idea: recursively use the selection algorithm itself to find a
good pivot for quick-select:
= Divide S into n/5 sets of 5 each
= Find a median in each set
= Recursively find the median of the “baby” medians.

Min size
for L
Min size
for G

@ See Exercise C-4.24 for details of analysis.

Selection 8

