Outline and Reading

- Weighted graphs (§12.1)
 - Shortest path problem
 - Shortest path properties
- Dijkstra’s algorithm (§12.6.1)
 - Algorithm
 - Edge relaxation
- The Bellman-Ford algorithm
- Shortest paths in DAGs
- All-pairs shortest paths

Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge
- Edge weights may represent distances, costs, etc.
- Example:
 - In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports

Shortest Path Problem

- Given a weighted graph and two vertices \(u \) and \(v \), we want to find a path of minimum total weight between \(u \) and \(v \).
- Length of a path is the sum of the weights of its edges.
- Example:
 - Shortest path between Providence and Honolulu
- Applications:
 - Internet packet routing
 - Flight reservations
 - Driving directions

Shortest Path Properties

- Property 1:
 - A subpath of a shortest path is itself a shortest path
- Property 2:
 - There is a tree of shortest paths from a start vertex to all the other vertices
- Example:
 - Tree of shortest paths from Providence

Dijkstra’s Algorithm

- The distance of a vertex \(v \) from a vertex \(x \) is the length of a shortest path between \(x \) and \(v \)
- Dijkstra’s algorithm computes the distances of all the vertices from a given start vertex \(x \)
- Assumptions:
 - the graph is connected
 - the edges are undirected
 - the edge weights are nonnegative
- We grow a “cloud” of vertices, beginning with \(x \) and eventually covering all the vertices
- We store with each vertex \(v \) a label \(d(v) \) representing the distance of \(v \) from \(x \) in the subgraph consisting of the cloud and its adjacent vertices
- At each step:
 - We add to the cloud the vertex \(x \) outside the cloud with the smallest distance label, \(d(x) \)
 - We update the labels of the vertices adjacent to \(x \)
Edge Relaxation

- Consider an edge \(e = (u, z) \) such that
 - \(u \) is the vertex most recently added to the cloud
 - \(z \) is not in the cloud
- The relaxation of edge \(e \) updates distance \(d(z) \) as follows:
 \[
 d(z) \leftarrow \min(d(z), d(u) + \text{weight}(e))
 \]

Example (cont.)

Dijkstra’s Algorithm

- A priority queue stores the vertices outside the cloud
 - Key: distance
 - Element: vertex
- Locator-based methods
 - \(\text{insert}(s, r) \) returns a locator
 - \(\text{replaceKey}(L, s) \) changes the key of an item
- We store two labels with each vertex:
 - distance \((d(v))\) label
 - locator in priority queue

Analysis

- Graph operations
 - Method \(\text{incidentEdges} \) is called once for each vertex
- Label operations
 - We set/get the distance and locator labels of vertex \(v \) \(O(\log(n)) \) times
 - Setting/getting a label takes \(O(1) \) time
- Priority queue operations
 - Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes \(O(\log n) \) time
 - The key of a vertex in the priority queue is modified at most \(\text{deg}(v) \) times, where each key change takes \(O(\log n) \) time
- Dijkstra’s algorithm runs in \(O(n + m \log n) \) time provided the graph is represented by the adjacency list structure
 - Recall that \(\Sigma_s \text{deg}(r) = 2m \)
 - The running time can also be expressed as \(O(m \log n) \) since the graph is connected

Extension

- Using the template method pattern, we can extend Dijkstra’s algorithm to return a tree of shortest paths from the start vertex to all other vertices
- We store with each vertex a third label:
 - parent edge in the shortest path tree
 - In the edge relaxation step, we update the parent label
Why Dijkstra’s Algorithm Works

- Dijkstra’s algorithm is based on the greedy method. It adds vertices by increasing distance.
- Suppose it didn’t find all shortest distances. Let F be the first wrong vertex the algorithm processed.
- When the previous node, D, on the true shortest path was considered, its distance was correct.
- But the edge (D,F) was relaxed at that time!
- Thus, so long as \(d(F) > d(D) \), F’s distance cannot be wrong. That is, there is no wrong vertex.

Why It Doesn’t Work for Negative-Weight Edges

- If a node with a negative incident edge were to be added late to the cloud, it could mess up distances for vertices already in the cloud.
- Dijkstra’s algorithm is based on the greedy method. It adds vertices by increasing distance.
- C’s true distance is 1, but it is already in the cloud with \(d(C) = 5! \).

Bellman-Ford Algorithm

- Works even with negative-weight edges
- Must assume directed edges (for otherwise we would have negative-weight cycles)
- Iteration i finds all shortest paths that use i edges.
- Running time: \(O(nm) \).
- Can be extended to detect a negative-weight cycle if it exists

Bellman-Ford Example

Nodes are labeled with their \(d(v) \) values

DAG-based Algorithm

- Works even with negative-weight edges
- Uses topological order
- Doesn’t use any fancy data structures
- Is much faster than Dijkstra’s algorithm
- Running time: \(O(n+m) \).

DAG Example

Nodes are labeled with their \(d(v) \) values
All-Pairs Shortest Paths

- Find the distance between every pair of vertices in a weighted directed graph G.
- We can make n calls to Dijkstra's algorithm (if no negative edges), which takes O(nmlog n) time.
- Likewise, n calls to Bellman-Ford would take O(n^2m) time.
- We can achieve O(n^3) time using dynamic programming (similar to the Floyd-Warshall algorithm).

Algorithm `AllPair(G)`: assumes vertices 1,...,n
for all vertex pairs (i,j)
if i = j
`D[0][i,j]` ← 0
else if (i,j) is an edge in G
`D[0][i,j]` ← weight of edge (i,j)
else
`D[0][i,j]` ← +∞
for k ← 1 to n do
for i ← 1 to n do
for j ← 1 to n do
`D[k][i,j]` ← min{`D[k-1][i,j]`, `D[k-1][i,k]` + `D[k-1][k,j]`}
return `D[n]`

Uses only vertices numbered 1,...,k-1
Uses only vertices numbered 1,...,k-1 (compute weight of this edge)