
1

Stacks

Stacks 2

Outline and Reading

The Stack ADT (§4.2.1)
Applications of Stacks (§4.2.3)
Array-based implementation (§4.2.2)
Growable array-based stack

Stacks 3

Abstract Data Types (ADTs)
An abstract data
type (ADT) is an
abstraction of a
data structure
An ADT specifies:

Data stored
Operations on the
data
Error conditions
associated with
operations

Example: ADT modeling a
simple stock trading system

The data stored are buy/sell
orders
The operations supported are

order buy(stock, shares, price)
order sell(stock, shares, price)
void cancel(order)

Error conditions:
Buy/sell a nonexistent stock
Cancel a nonexistent order

Stacks 4

The Stack ADT
The Stack ADT stores
arbitrary objects
Insertions and deletions
follow the last-in first-out
scheme
Think of a spring-loaded
plate dispenser
Main stack operations:

push(object o): inserts
element o
pop(): removes and returns
the last inserted element

Auxiliary stack
operations:

top(): returns a reference
to the last inserted
element without removing
it
size(): returns the number
of elements stored
isEmpty(): returns a
Boolean value indicating
whether no elements are
stored

Stacks 5

Exceptions
Attempting the
execution of an
operation of ADT may
sometimes cause an
error condition, called
an exception
Exceptions are said to
be “thrown” by an
operation that cannot
be executed

In the Stack ADT,
operations pop and
top cannot be
performed if the
stack is empty
Attempting the
execution of pop or
top on an empty
stack throws an
EmptyStackException

Stacks 6

Applications of Stacks

Direct applications
Page-visited history in a Web browser
Undo sequence in a text editor
Saving local variables when one function calls
another, and this one calls another, and so on.

Indirect applications
Auxiliary data structure for algorithms
Component of other data structures

2

Stacks 7

C++ Run-time Stack
The C++ run-time system
keeps track of the chain of
active functions with a stack
When a function is called, the
run-time system pushes on the
stack a frame containing

Local variables and return value
Program counter, keeping track of
the statement being executed

When a function returns, its
frame is popped from the stack
and control is passed to the
method on top of the stack

main() {
int i = 5;
foo(i);
}

foo(int j) {
int k;
k = j+1;
bar(k);
}

bar(int m) {
…
}

bar
PC = 1
m = 6

foo
PC = 3
j = 5
k = 6

main
PC = 2
i = 5

Stacks 8

Array-based Stack
A simple way of
implementing the
Stack ADT uses an
array
We add elements
from left to right
A variable keeps
track of the index of
the top element

S
0 1 2 t

…

Algorithm size()
return t + 1

Algorithm pop()
if isEmpty() then

throw EmptyStackException
else
t ← t − 1
return S[t + 1]

Stacks 9

Array-based Stack (cont.)
The array storing the
stack elements may
become full
A push operation will
then throw a
FullStackException

Limitation of the array-
based implementation
Not intrinsic to the
Stack ADT

S
0 1 2 t

…

Algorithm push(o)
if t = S.length − 1 then

throw FullStackException
else
t ← t + 1
S[t] ← o

Stacks 10

Performance and Limitations
Performance

Let n be the number of elements in the stack
The space used is O(n)
Each operation runs in time O(1)

Limitations
The maximum size of the stack must be defined a
priori , and cannot be changed
Trying to push a new element into a full stack
causes an implementation-specific exception

Stacks 11

Computing Spans
We show how to use a stack
as an auxiliary data structure
in an algorithm
Given an an array X, the span
S[i] of X[i] is the maximum
number of consecutive
elements X[j] immediately
preceding X[i] and such that
X[j] ≤ X[i]
Spans have applications to
financial analysis

E.g., stock at 52-week high
13211
25436X

S

0
1
2
3
4
5
6
7

0 1 2 3 4

Stacks 12

Quadratic Algorithm
Algorithm spans1(X, n)

Input array X of n integers
Output array S of spans of X #
S ← new array of n integers n
for i ← 0 to n − 1 do n

s ← 1 n
while s ≤ i ∧ X[i − s] ≤ X[i] 1 + 2 + …+ (n − 1)

s ← s + 1 1 + 2 + …+ (n − 1)
S[i] ← s n

return S 1

Algorithm spans1 runs in O(n2) time

3

Stacks 13

Computing Spans with a Stack
We keep in a stack the
indices of the elements
visible when “looking
back”
We scan the array from
left to right

Let i be the current index
We pop indices from the
stack until we find index j
such that X[i] < X[j]
We set S[i] ← i − j
We push x onto the stack

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

Stacks 14

Linear Algorithm
Algorithm spans2(X, n) #

S ← new array of n integers n
A ← new empty stack 1
for i ← 0 to n − 1 do n

while (¬A.isEmpty() ∧
X[top()] ≤ X[i]) do n

j ← A.pop() n
if A.isEmpty() then n

S[i] ← i + 1 n
else

S[i] ← i − j n
A.push(i) n

return S 1

Each index of the
array

Is pushed into the
stack exactly one
Is popped from
the stack at most
once

The statements in
the while-loop are
executed at most
n times
Algorithm spans2
runs in O(n) time

Stacks 15

Growable Array-based Stack
In a push operation, when
the array is full, instead of
throwing an exception, we
can replace the array with
a larger one
How large should the new
array be?

incremental strategy:
increase the size by a
constant c
doubling strategy: double
the size

Algorithm push(o)
if t = S.length − 1 then

A ← new array of
size …

for i ← 0 to t do
A[i] ← S[i]
S ← A

t ← t + 1
S[t] ← o

Stacks 16

Comparison of the Strategies

We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n
push operations
We assume that we start with an empty
stack represented by an array of size 1
We call amortized time of a push operation
the average time taken by a push over the
series of operations, i.e., T(n)/n

Stacks 17

Incremental Strategy Analysis

We replace the array k = n/c times
The total time T(n) of a series of n push
operations is proportional to

n + c + 2c + 3c + 4c + … + kc =
n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2
Since c is a constant, T(n) is O(n + k2), i.e.,
O(n2)
The amortized time of a push operation is O(n)

Stacks 18

Doubling Strategy Analysis
We replace the array k = log2 n
times
The total time T(n) of a series
of n push operations is
proportional to

n + 1 + 2 + 4 + 8 + …+ 2k =
n + 2k + 1 −1 = 2n −1

T(n) is O(n)
The amortized time of a push
operation is O(1)

geometric series

1

2

1
4

8

4

Stacks 19

Stack Interface in C++

Interface
corresponding to
our Stack ADT
Requires the
definition of class
EmptyStackException
Most similar STL
construct is vector

template <typename Object>
class Stack {
public:

int size();
bool isEmpty();
Object& top()

throw(EmptyStackException);
void push(Object o);
Object pop()

throw(EmptyStackException);
};

Stacks 20

Array-based Stack in C++
template <typename Object>
class ArrayStack {
private:

int capacity; // stack capacity
Object *S; // stack array
int top; // top of stack

public:
ArrayStack(int c) {

capacity = c;
S = new Object[capacity];
t = –1;

}

bool isEmpty()
{ return (t < 0); }

Object pop()
throw(EmptyStackException) {

if(isEmpty())
throw EmptyStackException

(“Access to empty stack”);
return S[t--];

}
// … (other functions omitted)

