Stacks

=%

Outline and Reading

#The Stack ADT (§4.2.1)
#Applications of Stacks (§4.2.3)
#Array-based implementation (§4.2.2)
#Growable array-based stack

Stacks 2

‘Abstract Data Types (ADTSs)

% An abstract data 4 Example: ADT modeling a
type (ADT) isan simple stock trading system

abstraction of a = The data stored are buy/sell
data structure orders

% An ADT specifies: = The operations supported are

= Data stored + order buy(stock, shares, price)
= Operations on the « order sell(stock, shares, price)
data + void cancel(order)
= Error conditions = Error conditions:
associated with

+ Buy/sell a nonexistent stock

operations ;
P + Cancel a nonexistent order

Stacks 3

‘The Stack ADT

The Stack ADT stores # Auxiliary stack
arbitrary objects operations:

Insertions and deletions = top(): returns a reference
follow the last-in first-out gl)etr::rlftis\;ilt?cirttigmoving
scr.leme . it

Think of a spring-loaded = size(): returns the number
plate dispenser of elements stored

Main stack operations: = iSEmpty(): returnsa

« push(object o): inserts Boolean value indicating
Zlementjo ' whether no elements are
stored
= pop(): removes and returns
the last inserted element
Stacks 4

Exceptions
4 Attempting the

4% In the Stack ADT,

execution of an operations pop and
operation of ADT may top cannot be
sometimes cause an performed if the
error condition, called stack is empty
an exception @ Attempting the

Exceptions are said to execution of pop or
be “thrown” by an top on an empty
operation that cannot stack throws an
be executed EmptyStackException

Stacks 5

Applications of Stacks

Direct applications

= Page-visited history in a Web browser

= Undo sequence in a text editor

= Saving local variables when one function calls

another, and this one calls another, and so on.

% Indirect applications

= Auxiliary data structure for algorithms

= Component of other data structures

Stacks 6

C++ Run-time Stack

4 The C++ run-time system main() { .
keeps track of the chain of inti=5 |
active functions with a stack foo(i); PC=1
4 When a function is called, the 1 m=6
run-time system pushes on the foo(int) {
stack a frame containing int k: foo
= Local variables and return value K= b1 PC=3
= Program counter, keeping track of =Ll =5
the statement being executed bar(k); k=6
4 When a function returns, its } :
frame is popped from the stack . main
and control is passed to the bar(intm) { IRE ; 2
method on top of the stack } =
Stacks 7

Array-based Stack

Algorithm size()
returnz+ |

@ A simple way of
implementing the
Stack ADT uses an
array Algorithm pop()

4 We add elements if isEmpty() then
from left to right throw EmptyStackException

A variable keeps else
track of the index of feit—1
the top element return S[¢+ 1]

sLITTTTTIN ~SNETTTTT]

012 t

Stacks 8

‘Array-based Stack (cont.)

The array storing the

stack elements may
become full

A push operation will
then throw a

Algorithm push(o)
if t=S.length — 1 then
throw FullStackException

FullStackException else
= Limitation of the array- te1+1
based implementation S[t] <o
= Not intrinsic to the
Stack ADT
sCIIT T T T TIN-SNELPTT T
012 t

Stacks

Performance and Limitations

Performance
= Let n be the number of elements in the stack
= The space used is O(n)
= Each operation runs in time 0(1)
% Limitations
= The maximum size of the stack must be defined a
priori , and cannot be changed

= Trying to push a new element into a full stack
causes an implementation-specific exception

Stacks 10

‘Computing Spans
\, ,

4 We show how to use a stack ¢ | &
as an auxiliary data structure 5
in an algorithm 4 —
4 Given an an array X, the span
S[i] of X[i] is the maximum 3
number of consecutive 2
elements X[j] immediately 1
preceding X[i] and such that
XUj] < Xi) 01 2 3

4 Spans have applications to

financial analysis 6131452

= E.g., stock at 52-week high

Stacks

“Quadratic Algorithm

Algorithm spans1(X, n)
Input array X of n integers
Output array S of spans of X #
S « new array of n integers n
fori<Oton—1do n
s« 1 n
while s <i A X[i — 5] < X[i] 1+2+..4+4(n-1)
s<s+1 1+42+..+(n-1)
Sli] «s n
return S 1

4 Algorithm spansI runs in O(n?) time

Stacks 12

Computing Spans with a Stack

4 We keep in a stack the

= Let i be the current index
= We pop indices from the
stack until we find index j
such that X[i] < X[j] 01234567
We set S[i] «i—j

We push x onto the stack

indices of the elements ;
visible when “looking

back” 5

% We scan the array from 4

left to right 3

2

1

0

Stacks 13

‘Linear Algorithm

Each index of the Algorithm spans2(X, n)
array S < new array of n integers n
= Is pushed into the A < new empty stack 1
stack exactly one fori<—Oton—1do n

= Is popped from while (=A.isEmpty() A
g:i estack at most X[top()] € X[i])do n
. j < A.pop() n
4 The statements in ifjAJ.s E,fpg,(o then "
the while-loop are S[i] i+ n

executed at most else

n.times S[l < i—j n
& Algorlthm spansZ A push(i) n
runs in O(n) time return S 1

Stacks 14

‘Growable Array-based Stack

#In a push operation, when

; s Algorithm push(o)
the array is full, ms_tead of if £=S.length — | then
throwing an exception, we A new array of
can replace the array with size ...

a larger one for i < 0 to 7 do
How large should the new Ali] « S[i]

array be? S« A
= incremental strategy: 111

increase the size by a St <o

constant ¢
= doubling strategy: double

the size

Stacks 15

Comparison of the Strategies

We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n
push operations

We assume that we start with an empty
stack represented by an array of size 1

We call amortized time of a push operation
the average time taken by a push over the
series of operations, i.e., T(n)/n

Stacks 16

Incremental Strategy Analysis

We replace the array k = n/c times

The total time T(n) of a series of n push
operations is proportional to

n+c+2c+3ctéc+...+kc=
n+c(1+2+3+...+k)=
n + ck(k+1)2
Since c is a constant, T(n) is O(n + k?), i.e.,
0o(n?)
The amortized time of a push operation is O(n)

Stacks 17

Doubling Strategy Analysis

4 We replace the array k = log, n

times

The total time T(n) of a series
of n push operations is
proportional to

n+1+2+4+8+ .. +2k=
n+ 2k -1 =20 -1

T(n) is O(n)

The amortized time of a push
operation is O(1)

geometric series

Stacks 18

‘Stack Interface in C++

Interface
corresponding to
our Stack ADT

Requires the
definition of class
EmptyStackException

4 Most similar STL
construct is vector

template <typename Object>
class Stack {
public:
int size();
bool isEmpty();
Object& top()
throw(EmptyStackException);
void push(Object o);
Object pop()
throw(EmptyStackException);

Stacks 19

template <typename Object>
class ArrayStack {
private:
int capacity;
Object *S;
int top;
public:
ArrayStack(int c) {
capacity = c;

t= -1,
}

S = new Object[capacity];

‘Array-based Stack in C++

bool isEmpty()
{ retun (t<0); }

Object pop()
throw(EmptyStackException) {
if(isSEmpty())
throw EmptyStackException
(“Access to empty stack”);
return S[t--];
}

Stacks

20

